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Abstract

We discuss the problem of interpolatiag Hermite data on the sphere (two points with associated first derivative
vectors) by spherical rational curves. With the help of the generalized stereographic projection (Dietz et al., 1993),
we construct a two-parameter family of spherical quartics solving this problem. We study the shape of these
solutions and derive criteria which guarantee solutions without cusps or self-intersections.

0 2003 Published by Elsevier B.V.

Keywords:Hermite interpolation; Spherical rational curves; Generalized stereographic projection

1. Introduction

Spherical curves, and rational spherical curves in particular, have various applications. These include
techniques for motion design in robot kinematics and computer animation (Juttler and Wagner, 2002;
Roschel, 1998), and algorithms for the construction of Pythagorean hodograph curves (Farouki
et al., 2002; Farouki, 2002). Several methods for generating spherical curves are available. Spherical
generalizations of de Casteljau’s algorithm, which are used in Computer Graphics (e.qg., (Pletinckx, 1989;
Shoemake, 1985), lead to non-rational spline curves with rather complicated coordinate functions. This
entails nonlinear interpolation conditions, difficulties with the constructio6“€urves and the lack of
a subdivision property (Nielson and Heiland, 1992). Other approaches are based on mappings into the
plane (Jupp and Kent, 1987) arc splines (Hoschek and Seemann, 1992), biarcs (Wang and Joe, 1993,
1997), blending methods (Kim and Nam, 1995), spherical generalizations of the cumulative form of
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B-spline-curves (Kim et al., 1995), spherical Lagrange interpolation (Gfrerrer, 1999) and generalized
corner cutting (Noakes, 1998).

Rationalcurves on quadric surfaces (e.g., on the sphere) can be seen as solutions to certain Diophantine
equations in the ring of polynomials. In the three-dimensional case, the equation of the unitSphere
(which is a representative of the class of oval quadrics) takes theddrmax? + y? + z2. All irreducible
solutions can be generated with the help of a classical representation formula from number theory, which
was first noted by V.A. Lebesgue in 1868 (Dickson, 1952).

This formula has been used to define a mapping from real projective 3-space onto the unit sphere,
§: P3(R) — S?, which has been called thgeneralized stereographic projectigiietz et al., 1993),
since it comprises the standard stereographic projection as a special case. As a major advantage, this
mapping avoids the dependency on the choice of the center of projection, which is always present for the
standard stereographic projection. Due to its algebraic origin, this mapping can be used to generate any
rational curve of degreen2on the sphere as the image of a curve of degree

This mapping can be discussed from a geometrical point of view, too. It can be shown to identify the
points of the unit sphere with a special two-parameter system of lines, called an elliptic linear congruence.
See the textbook by Pottmann and Wallner (2001), where the generalized stereographic projection
appears as the famous “Hopf mapping”, for more information on this point of view. Also, the mapping
is closely related to quaternion calculus and the Eulerian representation of special orthogonal matrices
(Juttler and Wagner, 2002). Another possible framework, based on Clifford algebras, is described by
Choi et al. (2002).

We use the generalized stereographic projection to generate and to analyze the solutior@!to the
Hermite interpolation problem with spherical rational curves on the si#farethree-dimensional space.

Given two points with associated first derivatives on a sphere, we interpolate this data with a spherical
rational quartic.

Recently, rational quartics on the hypersph&tén four-dimensional space have been used by Wang
and Qin (2000) for solving th€'! Hermite interpolation problem. The data (two points with associated
first derivative vector) spans a hyperplane, and it is natural to study those solutions which are contained
in this hyperplane, i.e., three-dimensional solutions (although other solutions exist too). In this paper we
restrict ourselves to these solutions, leading to a two-parameter family of solutions.

Using the generalized stereographic projection, each solution can be identified with a point in a certain
parameter plane. We discuss the shape of the solutions, which is characterized by the presence of cusps
or double points. This results in a so-callgthracterization diagramthe parameter plane is subdivided
in different regions which correspond to solutions with the same shape.

2. Preliminaries

Throughout this paper we us®@mogeneous coordinatps= (po, p1, p2, p3) # (0, 0, 0, 0) to describe
points in 3-space. If two vectors, p’ of homogeneous coordinates are linearly dependentpize.p p’
for somep £ 0, then they correspond to the same point in 3-space.

If po # 0 holds, then the associat&rtesian coordinatesf the pointp areP = (p1/po, p2/ po, p3/
po). Otherwise, if pg = 0, the coordinatep correspond to a so-calledeal point it can be used to
represent the intersection point of all lines with a direction parallel to the véptop,, p3). Capital
respectively lowercase letters are used to denote Cartesian respectively homogeneous coordinates.
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With the help of homogeneous coordinates, the equation of the unit sphere in 3-space can be rewritten
as

x& = x4 x3 4 x2. (1)
Any quadruple of polynomialsy(z), ..., x3(t) which satisfies this equation defines a spherical rational
curvex(r) = (xo(t), ..., x3(1)).

In order to generate rational curves and surfaces on the unit sphemggribelized stereographic
projectionhas been introduced by Dietz et al. (1993). For the convenience of the reader, we summarize
the main properties.

The generalized stereographic projection maps a mintthree-dimensional space to the point

8(p) = (p&+p3+p2+pi, 2pop1—2p2ps, 2p1ps+2pop2. Pi+p3—ps—p3) )

on the unit sphere. Indeed, the paint §(p) satisfies (1).

By restricting the generalized stereographic projection tocthelane, (i.e., by choosing points with
p3 = 0), one gets the standard stereographic projection, with the center at the north=p¢le0, 0, 1)
of the sphere.

This mapping is based on a representation formula for irreducible Pythagorean quadruples in number
theory which is attributed to V.A. Lebesgue (Dickson, 1952). Due to its algebraic properties, any rational
spherical curve of degree:Zan be constructed by applyidgo a rational space curve of degree

For instance, any spherical curve of degree two, i.e. cimale, can be obtained as the image diree
in P3(R). Applying the standard stereographic projection to lines incth@lane, by contrast, gives only
those circles which pass through the center of projection. Similarly, any spherical raji@rat can be
generated by applying the generalized stereographic projection to a rational curve of degree 2, i.e., to a
conic. This observation will be exploited in this paper.

The generalized stereographic projection is not a one-to-one mapping, as points in 3-space are mapped
to a surface. Anypoint on the sphere corresponds tdirze in 3-space. Any of these lines is called a
projecting line

In contrast to the more familiar case of a perspective projection, the projecting lines do not pass through
a single center, but form a more sophisticated system of lines instead. For ang poipb, p1, p2, p3),
let p* = (—ps, p2, —p1, po). The line spanned by andp' is then a projecting line; all its points are
mapped to the same point on the unit sphere. A short calculation indeed confirms that, for arbitrary
coefficientsi, u,

SO+ uph) = (A% + u?)s(p). (3)

Since we are using homogeneous coordinates, all points on the line spanpeathy ™ are mapped to
the same point.

The system of all lines of the forip + up* has a space-filling propertgny point in three-space lies
on exactly one lineThese lines can be shown to form a so-called linear congruence: they all pass through
two fixedfocal lines which are, however, conjugate-complex in our situation. For all points on the two
focal lines, the four components of (2) vanish simultaneously. Consequently, the focal lines consist of all
base points of the generalized stereographic projection. See Dietz et al. (1993) or Pottmann and Wallner
(2001) for more details.
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3. Hermiteinterpolation with spherical quartics

We study the problem of'* Hermite interpolation with spherical rational curves. Given two points
Qo andQ; on the sphere with associated first derivatives (tangent veddgrapdD1, we want to find a
spherical rational curv () with domains € [0, 1] such that

X(0) = Qo, dEX(t) =Do, X(1)=Qi, and EX(t) = Dx. (4)
4 1=0 dr =1

This problem can be solved by rational curves of degree 4, the so-called raghaaical quarticsin

homogeneous coordinates= (xg, x1, x2, x3), these curves are described by four quartic polynomials

x; = x; (¢). This corresponds to rational Cartesian coordinate functoas(x;/xo, x2/xo0, X3/xg).

Note that the given data includes not only the tangents, but aldertgthof the boundary derivatives,

i.e., the parametric speedat 0 andr = 1! Consequently, the solution to this problem can easily be
used to construaf?! spline curves. The parametric speed may be important for applications in computer
animation or kinematics, where spherical curves correspond to rotations. Here, the interpolation of a
given (angular) velocity distribution can sometimes be desirable.

In order to simplify the analysis of the solutions, we assume thaCthkoundary data is given in a
certain standard form, as follows. First, the poi@gandQ; are assumed to be in the lower half of the
xz-plane. Second, their bisector in tlaeplane is assumed to be theaxis. Then, using the well-known
parameterization of a circle hy= tan , the boundary points can easily be represented as

—2q g-—1 2q q 2_1
= ,0, , and = ,0, 5
Qo (q2+1 q2+1> Q1 <q2+1 g2 +1 ©)

with a constany < [0, 1]. The given tangent vectoB, at Qp and D, atQ, can be represented as

———(T1(q* — 1), T2, 2T1q) (6)

Bo= 77

- 1
D=7 7(S1(a® = 1), 52, —2519), @)
whereTy, T», and Sy, S, are certain constants.

We assume that neither of the given tangent vectors vanishes and that the two endpoints are different.
Hence,(T1, T,) # (0, 0), (S1, S2) # (0, 0), andg # 0.

We call the given dataircular, if it can be matched by a circular ardhis the case if and only if the
two pointsQ,, Q; and the tangent vectoEso D, are coplanar.

4. Canonical form of the solutions
We give an explicit representation of the family of solutions, depending on two free pararieters

andY. The solutions matching a given set@t Hermite boundary data have two degrees of freedom;
consequently, they can be identified with a point in Xé-plane.

1 Here we consider general quartic representations of the circular arc.
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Fig. 1. Choosing the preimage control points of the spherical quartic.

4.1. Preimage curve

In order to construct an interpolating spherical quartic curve, we apply the generalized stereographic
projection to a quadratic rational preimage curve, i.e., to an arc of a conic section (conic for short). The
preimage curve is given as a rational curve of degree 2 in Bézier form, with the parameterization

p(t) = (L—1)?bg + 2 (1 — )by +1?b,, 1 €10, 1]. (8)

Due to the properties of the generalized stereographic projection, any curve of theypencit up(1)*
(», u € R) is mapped to the same quartic curve. Thus, we may—without loss of generality—pick one
of these preimages. We do so by constraining the weight and the location of the inner control point; its
weight is normalized to be 1, and its location is constrained ta thplane?
bl:(l’X’ Y’O)‘ (9)
The two boundary control points of the preimage curve are chosen as
bo=20(1,—-¢,0,0) + u0(0,0,¢4,1), and
b2 - )"1 (1’ q’ 0’ 0) + /-’Ll (07 Oa _q’ 1)
These are arbitrary points on the preimage lines of the two given boundary gjrasd Q,, with

arbitrary weights. Consequently, the image cuig® matches these points. The position and the weights
of the control points depend on the six parameféry’, Ao, A1, (o and ;.

(10)

4.2. Image curve

We apply the generalized stereographic projection (2) to the quadratic curve (8). This results in the
quartic Bézier curvex(r) = §(p(?)),

X(1) = (1 —1)*co + 41— 1)3tcy + 6(1 — 1)%1%co + 4(1 — 1)i3c3 + 3¢y, (11)

2 The pencil of curves has two degrees of freedom, which are used to satisfy the two constraints. The weight normalization
excludes inner control points at infinity. This special case can be studied by considering th& liihit= (y X, y Yo), where
y — 00.
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with the control points

Co=(A3+1d) (¢>°+1, —24, 0, > 1), (12)
=0o
C1= (—hog X + togY + Ao, 20X — oY — Aog, noX + AoY + pog, —rogX + poqY — ro), (13)
Co = %(zx2 +2Y% + (horr + pona) (1 — ¢°%) + 2, 4X, 4Y + 2uohag
— 2hopaq. 2X% +2Y% — (hor1 + popd) (1+ ¢%) — 2), (14)
C3 = (A1gX — u1gY 4 A1, MaX — Y + Aag, 1 X + A1Y — paq, hgX — paqY — rq) (15)

and

Cao=(A+ud) (¢°+1, 29,0 ¢°-1).

=0
As we chose the boundary control poititg b, of the preimage curve on the projecting lines (10), the
boundary control pointsy, ¢4 of the quartic curve match the given poidg, Q;.
In the next step, we may choose the parametgrs,, 1o, andu, in order to match the given derivative

data, cf. (6) and (7). After some (computer) algebra one arrives at

g Y @+ DX +q) _ X+ + 1Y (g +1)

T TR+ )2+ T3 T TP+ D+ T

(16)

17)

El

and
S1(g®+ (X —q) — S2Y Sa(g — X) — $1Y(g*> + 1)
M=4 2,2 2 2 1=4 202 2 2 :
S2(q2 +1)2 + 53 S2(q2 +1)2 + 52

(18)

’

The numerators of these expressions vanish if and only if the Hermite data is singulﬁo keQ or
D; = 0. Summarizing, we have the following result.

Theorem 1. The spherical rational quartic curves which match i Hermite boundary dat#4) have
the form(11) with the control pointg12)—(16) and the parameters; and u; as in(17), (18).

Thus, after taking the Hermite data into account, we obtain a two-parameter family of solutions. The

two free parameters are the two coordinat&sY) of the inner control poinb; of the preimage curve.
If the data is non-circular, then different parametéxs Y) also produce different solutions. It can be
shown that any two quadratic preimages of a spherical quartic belong to the same.pémcil up(r)*

of quadratic curves, and each such pencil contains only one curve with an inner control point of the
form (1, X, Y, 0). Consequently, we have (for non-circular data) a one-to-one correspondence between

the solutions of the Hermite interpolation problem and the pdikits) € R2.

5. Shapeanalysis

Based on the previous theorem, we analyze the shape of the interpolating curves. In particular, we will

characterize solutions with double points and cusps.
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5.1. Global classification

We begin our analysis by considering the spherical quartic curve (11) witbxtemdedparameter
domainz € R U {o00}. Its shape can be classified as follows.

e Casel (degenerate The preimage curve (8) is contained in a projecting line (3). Consequently, the
spherical quartic curve degenerates intsirgle point This curve matches the degenerate Hermite
dataQ,=Q; andDy=D;=0,i.e.,g=T1 =T, =5, =S,=0.

e Case2 (singulan. The preimage curve (8) is contained in a line, which is not a projecting line.
Consequently, the spherical quartic curve degenerates ititola (if the preimage curve traces the
entire line) or into a circular arc (if the preimage curve traces a line segment only, which is then
covered twice). This case may occur only if the given Hermite boundary data is coplanar, as they
cannot be matched by a single circular arc otherwise.

e Case3 (genera). The preimage curve (8) is a non-degenerate conic. Clearly, the control bgibts
andb, span a plane, and the conic is contained in this plane. Due to the properties of the generalized
stereographic projection (see (Dietz et al., 1993)), the ptanentains exactly one projecting lihe
¢,.. Depending on the relative position of this line with respect to the preimage conic, we arrive at
three different sub-cases.

— Case 3.1 (hyperbolig. The line ¢, intersects the conic in two real and distinct points. Con-
sequently, the spherical quartic curve has a single double point with two real parameter values.
— Case3.2 (elliptic). The linet,, intersects the conic in two conjugate-complex and distinct points.

— Case3.2.1 fegular). The two intersections do not belong to the two focal lines. The spherical
quartic curve does not have a double point. More precisely, the curve has an isolated double
point, but with two conjugate-complex parameter values.

— Case3.2.2 gingulan. The two intersections belong to the two focal lines. Consequently,
the spherical quartic curve degenerates into a circle, since the componehix(0fj share
a quadratic factor. Its roots are the conjugate-complex parameter values of the intersections
with ¢,.

Similar to Case 2, this case may occur only if the given Hermite boundary data is coplanar, as
they cannot be matched by a single circular arc otherwise.
— Case3.3 (parabolic). The lineZ, is tangent to the conic. The tangent point is necessarily real, thus
not on either of the two focal lines. We obtain a spherical quartic curve with a cusp.

Some examples for Case 3 are shown in Fig. 2.

Clearly, as we want to analyze the solutions to the Hermite interpolation problem (4), we are mostly
interested in the properties of the cursegment < [0, 1]. This segment may have a double point or
a cusp. Among the two-parameter family of solutions (see Theorem 1), there are three transition cases
between the different types of solutions. These are the curves witbgaand curves witldouble points
at the boundaries (at=0 or atr = 1).

3 Recall that the projecting lines pass through two conjugate-complex focal lines. Thé.lire spanned by the two
intersections of the plane with the focal lines.
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preimage curve projecting line

Fig. 2. Hyperbolic, elliptic (regular) and parabolic case.

5.2. Cusps

Assume that the quartic curve is not a circular arc. The image of the quadratic rational Bézier curve
p(t) (see (8)) under the generalized stereographic projeétioas a cusp for some= 1, if the tangent
atp(zp) is a projecting line.

Recall that the tangent of a curpdr) is spanned by the poimqi(z) and by the associatedkrivative
point p(z). Let

gij®)=pi®)p;) — p;@®)pi(1), i,j=0,...,3, (19)
be thePliicker coordinatesof the tangent. As observed by Dietz et al. (1993), the projecting lines of the

generalized stereographic projection are uniquely characterized by the two linear eqgmtiogss = 0
andgg, — gz1 = 0 of the Plicker coordinates. Consequently, if the two polynomials

G(t) =go1(t) — g23(t) and H(t) = goa(t) — ga1(t) (20)

have the simultaneous root= 1y, then either the tangent of the preimage curvp(@) is a projecting
line, or the preimage curve is singular rat 1o, i.e., p(fg) and the derivative poinp(zg) are linearly

4 Taking the antisymmetry into account, thg form a system of 6 homogeneous coordinates which uniquely characterize
the lines in three-dimensional space. A more detailed introduction to line geometry is beyond the scope of the present paper.
The interested reader should consult the textbook of Pottmann and Wallner (2001).
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dependent. The second case was excluded by assuming a non-circular spherical quartic. The first case
corresponds to a cusp of the spherical quartic cu(ve

Both G (r) and H (¢) are polynomials of degree 2 irand of degree 2 iX, Y. Using computer algebra
tools we compute the resultant 6fz) and H (¢) with respect to the parameter
(T (@° D)+ T (S3 (¢ +D)*+S3)°

4096 ReqG (1), H(1), {t}). (21)

The Maple code of these computations is given in Appendix A. The resultant is a polynomial of degree 8
inX,Y.

The resultant vanishes if any only if both polynomials have a commorr reat. Consequently, the
quartic curvex(t) has a cusp for some= 1y if and only if the resultant vanishes. The set of all points
in the XY -plane withc(X, Y) = 0 forms an algebraic cur«& in the plane; this curve will be referred to
as thecusp curve The cusp curve is symmetric with respect to thaxis. It intersects thé'-axis in the
points(xq, 0), where each of these points has multiplicity 4.

C(X, Y):

Proposition 2. Assume that the Hermite data is non-circular. The cusp cdriectors into four circles.
All these circles pass through the two poiisg, 0), and they are symmetric with respect to thexis.

Proof. The two points(+q,0) and the circular points at infinity (with homogeneous coordinates
(0,1, £i), wherei is the imaginary unit) are 4-fold points of the cusp curve. This can be shown
by substituting these points into the equation of the cusp curve and its derivatives. Furthermore, it is
straightforward to verify that none of the six lines determined by the four 4-fold points is a component
of the cusp curve, provided that the data is non-circular.

Now we claim that, other than the four 4-fold points, any poiof the cusp curve is not on any of the
six lines determined by the four 4-fold points. For otherwise, if such a line passes throtig it has
nine intersections with the cusp curve. It follows, by Bezout's theorem, that the line is a component of
the cusp curve, which is a contradiction.

Therefore, other than the four 4-fold points, any painf the cusp curve is on a uniqueoper conic
C, that passes through the four 4-fold points, since a proper conic is uniquely determined by five points
with no three of the five points being collinear. Since this proper (hence, also irreducible)Gamis
4+ 1> 16 intersections with the cusp curve, by Bezout’s theor€pnis a component of the cusp curve.
This shows that the cusp curve is the union of a collection of proper conics. Since the cusp curve is of
degree 8, we conclude that it consists of four proper conics, which are necessarily circles since they all
pass through the circular points. This completes the progf.

The points(+q, 0) play a special role, since they correspond to the given dat&X ,I¥) = (—g¢, 0)
(respectively(X, Y) = (¢, 0)), then the control pointby (respectivelyb,) andb; of the preimage curve
are both mapped tQ, (respectivelyQ,).

The four circles of this proposition will be called tleesp circles After analyzing several examples
we were led to formulate the following conjecture.

Conjecture 3. Two of the four cusp circles are real, while the other two are conjugate-complex.

Despite several efforts we were not able to prove (or disprove) this conjecture, as computer algebra
tools which are available to us failed to find a symbolic factorization of the polynoatigl V).
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Fig. 3. Characterization diagram with cusp curve (red) and double point curves (green and blue). Th@points7) and (S)
correspond to examples of interpolating curves, see Figs. 4 and 5.

They succeeded, however, in all examples, where we randomly chose rational numbers as input data
S1, 82, Th, T, andq. Apparently, the difficulties are caused by the fact that factoring the equation involves
the symbolic solution of a univariate equation of degree 4.

An example is shown in Fig. 3 (cf. Section 5.4). The real part of the cusp curve leads to the red circles.
Both circles are symmetric with respect to theaxis and intersect in the two pointsgqg, 0).

5.3. Boundary double points

Assume that the quartic curve is not a circular arc. Then, the spherical quarticxétinhas a double
point or a cusp at =0, if and only if there is a projecting line (3) intersectipgd) = by and another
point p(ze) of the preimage curve. Equivalently, the projecting line throbgland the control pointb,,
b, have to be coplanar. This leads to the following double point condition.

Theorem 4. Assume that the Hermite data is non-circular. The spherical quartic curve has a double point
atr = 0 (respectively at = 1), if and only if
do(X,Y) = 251¢°%Y +2851qY — Soq? + S X%+ S, Y2 = 0.
(respectivelyly (X, Y) = —2T1q%Y — 2T1qY — Tog® + ToX? + TLbY? = 0).
The polynomialsiy(X, Y) = 0 and d1(X, Y) = 0 define two circles in th&(Y-plane. Both circles are
symmetric with respect to thHé-axis and intersect in the two pointsq, 0).

(22)

Proof. Non-circular data cannot be interpolated by a circular arc. Consequently, the preimage curve
is not a straight line. Thus, if the projecting line throulhis coplanar withb; andb,, then it either
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intersects the curve in another point, leading to a double point, or it is tangent tbit lading to a
cusp.

The coplanarity is guaranteed by = 0, as this polynomial is the determinant of the matrix with rows
(1,—¢,0,0), (0,0,4,1), b; andb,. The case = 1 follows similarly.

The two conicslp(X, Y) =0 andd,(X, Y) = 0 are circles, since they pass through the circular points
at infinity. In addition, they can be shown to pass through the two p¢ifgs0). O

The two circles will be referred to as thmundary double point circleClearly, they intersect the
cusp curve only in the two pointstg, 0).

Along with the cusp curve, the double point circles can be used to define a characterization diagram,
which governs the shape of the interpolating quartic curve. An example is shown in Fig. 3. The boundary
point circles are shown in green and blue.

5.4. An example

We apply the theoretical results to the example

q=%, Sl=—g, Sz=—;, T1=—2, T2=g. (23)
The double point circles (green and blue) and the cusp curve (red) are shown in Fig. 3. We have generated
18 different examples of interpolating curves. They are shown in Figs. 4 and 5.

The first exampleq1...17) correspond to the intersections of the cusp curve and the double
point circles with theY -axis (even numbers), and to points in between them (odd numbers). The last
example (S) has been constructed with the help of (non-generalized) stereographic projection, where the
center has been fixed at the ‘north pole’ of the unit sphere. For all 18 examples, the correspanding
points have been marked in Fig. 3.

In all examples, the curve segment obtainedsfar[0, 1] is shown in black, and its end points are
marked. The exterior part of the curve is represented by the two blue curve segments with the parameter
domains[—100, 0] and[1, 101]. In order to make the curve segments on the back side visible, the sphere
is shown as a shaded ‘stripe model'.

The type of each curve is represented by the “icon” on top of each plot: the black segment corresponds
to ¢ € [0, 1], and the blue curve represents the exterior part.

5.5. Characterization diagram

The cusp curve and the boundary double point circles defahagacterization diagramfor spherical
guartic curves, see Fig. 3. Each point in the diagram corresponds to a solution of the Hermite interpolation
diagram, and vice versa. Within each cell of the diagram, the solutions have the same shape.

By crossing a red curve, one will “destroy” or “create” a double point. By crossing a blue or green
curve, one of the two parameter values of a double point will cross one of the segment boundaries.

The different shapes are represented by the “icons” in Fig. 3. Again, the black segment corresponds
to ¢ € [0, 1], and the blue curve represents the exterior part. The boundaries are marked by two points.
The limit shapes (curves with cusps or boundary double points) are associated with curves in the diagram
(cusp curve or boundary point circles). The other shapes correspond to regions (bounded by the various
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Fig. 4. Examples—interpolating curves with various shapes (1-9).
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(10)X =0,Y = —0.04 (11)X =0,Y = 0.2 (12)X=0,Y =—0.4
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Fig. 5. Examples—interpolating curves with various shapes (10-17, S).
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circles) of the diagram. There are 8 different shapes, corresponding to the cells and the boundaries of the
characterization diagram.

Finally, it should be noted that the case of circular data (coplanar points and derivatives) requires
a separate, more detailed analysis. Here, the double point circles and the cusp curve degenerate in
various ways into circles with higher multiplicities, depending on whether the data admits a quadratic
parameterization or not.

6. Concluding remarks

We discussed the problem of interpolati@g Hermite data on the sphere (two points with associated
first derivative vectors) by rational spherical quartics. Using the generalized stereographic projection
(Dietz et al., 1993), we obtained a two-parameter family of rational quartics which solve this problem.
The shape of the solutions can be analyzed with the help of a characterization diagram, which describes
the relation between the shape of the solutions and the two free parameters.

Our results can be used to develop a practical scheme for spherical Hermite interpolation, which would
generate quartic spherical® Hermite splines. Clearly, for each segment of the spline, the remaining
two degrees of freedom have to be dealt with appropriately. This could be based on suitable heuristic
techniques, or using numerical methods for minimizing a suitable fairness measure. Both approaches
should take the shape of the solution into account.

We conclude this paper by pointing to two possible applications of quartic sphércalermite
splines. First, they can be useful for designing quintic sp&ydhagorean hodograph curvesince the
hodograph of these curves corresponds to a spherical rational curve (see (Farouki et al., 2002)). Second,
if they are used for generatirrgtional motions(rigid body motions with rational point trajectories, see
(Juttler and Wagner, 2002)), they provide an interpolation scheme which has the property of “invariance
with respect to parameterization”, as it was called by Réschel (1998). So far, only the scheme of Gfrerrer
(1999) provides this property.
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Appendix A

For the convenience of the reader, we provide a listing of the Maple code used for generating the
criteria for cusps and double points.

> restart: with(linalg): with(plots):
> # preinmage curve; boundary control points
> b0: =eval m(| anbda0O*[ 1, -q, 0, 0] +mu0*[ 0, 0, q, 1]);
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b2: =eval m(| anbdal*[1, q, O, O] +nul*[ 0,0, -q, 1]);
# components X and Y of bl serve as free paraneters
bl:=[1,XY,0];
# preimage curve; s=(1-t)
p: =eval m(s"2*b0+2*s*t *bl+t *2*b2) ;
# derivative
pd: =eval m(2*(s*(bl- b0) +t *(b2-bl)));
# general i zed stereographic projection
gsp: =proc(d)
RETURN([ d[ 1] ~2+d[ 2] ~2+d[ 3] ~2+d[ 4] ~2, 2*d[1]*d[2]-2*d[3]*d[4],
2*d[ 2] *d[ 4] +2*d[ 1] *d[ 3], d[2]~"2+d[3]"2-d[1]"2-d[4]"2 ]);
end;
# i mage curve
x:=subs(s=(1-t), gsp(p)):
# control points of image curve
for i fromO to 4 do
map(factor, eval m map(coeff, map(coeff, gsp(p),s,i),t,4-i)
/binomal (4,i)));
od:
# image curve in Cartesian coordi nates
xc:=[x[ 2]/ x[ 1], x[3]/x[1],x[4]/x[1]]:
# derivative
xcd: =map(di ff, xc,t):
# derivatives at segnent boundaries
xcdO: =map(fact or, subs(t =0, eval (xcd)));
xcdl: =map(factor, subs(t=1, eval (xcd)));
# Cl1 boundary conditions: interpolation of 1st derivatives
res0: =subs( | anbdaO=I| anbda0s, nu0=nu0s, sol ve({xcdO[ 1] =T1*(g”"2-1)
[/ (1+g~2), xcdO[2] =T2/(1+g”2)}, {Il ambdaO, mu0}));
resl: =subs(| anbdal=l anbdals, nul=nuls, sol ve({xcdl[ 1] =S1*(g”"2-1)
/(g~2+1), xcdl[2]=S2/(g*2+1)}, {lanbdal, mul}));
assign(res0); assign(resl);
ressubs: = | anbdaO=I anbda0Os, muO=nu0s, | anbdal=l anbdals, nul=nuls
# substitute results into preimge control points
b0s: =subs(ressubs, eval (b0)): b2s: =subs(ressubs, eval (b2)):
auxfac: =( T1N2+q"4* TAIN2+T272+2* g 2* T1N2)
*(S1N2+2*gn2* S1M2+qnh4* S1IN2+S202) ;

VVVVVVVVVVVVVVYVYVYV

VVVVVVVVVYV

\

VVVVYV

factor (subs(Y=0,cc));

# condition for a double point at t=0

dbO0: =nurrer (fact or (1/ g/ 8*det (subs(ressubs, matri
g, 1,1, XV,0,b2[1], b2[ 2], b2[ 3], b2[4]]))

# condition for a double p0|nt at t=1

dbl: =nurer (factor(1/ g/ 8*det (subs(ressubs, mul=muls, matrix(4,4,[1,q
0,0,0,0,-9,1,1, X Y,0,b0[ 1], bO[ 2], bO[ 3], b0[4]]1)))));

> # substitute results into preimge curve

> pint:=map(factor, subs(ressubs, s=(1-t),eval (p))):

> # its derivative points

> pintd: =nap(factor, subs(ressubs, s=(1-t), eval (pd))):

> # cusp condition

> g01: =factor (auxfac*(pint[1] *pintd[2]-pint[2] *pi ntd[1]))
> g02: =factor(auxfac*(pint[1] *pintd[3]-pint[3]*pintd[1])):
> g23: =factor(auxfac*(pint[3]*pintd[4]-pint[4]*pintd[3])):
> g31: =factor (auxfac*(pint[4]*pintd[2]- plnt[2]*pintd[4])):
> cc: =factor(resul tant(g01-g23, g02-9g31, t)/(8192*auxfac”2)):
>

>

>

x(4,4,[1,-q,0,0,0,0,
1))

vV Vv
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